Balanced Trees

Part Two



Outline for Today

* Red/Black Trees

e Using our isometry!
 Tree Rotations

« A key primitive in restructuring trees.
- Augmented Binary Search Trees

* Leveraging red/black trees.



Recap from Last Time



2-3-4 ‘Trees

« A 2-3-4 tree is a multiway search tree where

« every node has 1, 2, or 3 keys,

« any non-leaf node with k keys has exactly k+1 children, and

« all leaves are at the same depth.

« To insert a key, place it in a leaf. If out of space, split the leaf and
kick the median key one level higher, repeating this process.
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Red/Black Trees

* A red/black tree is a BST with
the following properties:
« Every node is either red or black.
* The root is black.
* No red node has a red child.

* Every root-null path in the tree
passes through the same number of
black nodes.



Red/Black Trees

* A red/black tree is a BST with
the following properties:
« Every node is either red or black.
* The root is black.
* No red node has a red child.

* Every root-null path in the tree
passes through the same number of
black nodes.

 After we hoist red nodes into
their parents:

« Each “meta node” has 1, 2, or 3
keys in it. (No red node has a red

child.) This is a

- Each “meta node” is either a leaf or 2-3-4 tree!
has one more child than key. (Root-
null path property.)

e Each “meta leaf” is at the same
depth. (Root-null path property.)



New Stuff!



Data Structure Isometries

 Red/black trees are an isometry of 2-3-4 trees;
they represent the structure of
2-3-4 trees in a different way.

» That gives us some really easy theorems
basically for free.

« Theorem: The maximum height of a red/black
tree with n nodes is O(log n).



Data Structure Isometries

 Red/black trees are an isometry of 2-3-4 trees;
they represent the structure of
2-3-4 trees in a different way.

» That gives us some really easy theorems
basically for free.

« Theorem: The maximum height of a red/black
tree with n nodes is O(log n).

Explain why, using the isometry.

Answer at
https://cs166.stanford.edu/pollev



https://cs166.stanford.edu/pollev

Data Structure Isometries

 Red/black trees are an isometry of 2-3-4 trees;
they represent the structure of
2-3-4 trees in a different way.

» That gives us some really easy theorems
basically for free.

« Theorem: The maximum height of a red/black
tree with n nodes is O(log n).

* Proof idea: Pulling red nodes into their
parents forms a 2-3-4 tree with n keys, which
has height O(log n). Undoing this at most
doubles the height of the tree. B-ish



Exploring the Isometry

e Nodes in a 2-3-4 tree are classified into
types based on the number of children
they can have.

 2-nodes have one key (two children).
 3-nodes have two keys (three children).
* 4-nodes have three keys (four children).

« How might these nodes be represented?



Exploring the Isometry
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Red/Black Tree Insertion

* Rule #1: When inserting a node, if its
parent is black, make the node red and
stop.

» Justification: This simulates inserting a
key into an existing 2-node or 3-node.

e 6 b 68
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We need to move nodes
around in a binary search
tree. How do we do this?

Goal



Tree Rotations
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Tree Rotations
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Rotate

Rotate
Left




apply
rotation

)

This applies any time we're
inserting a new node into
the middle of a “3-node” in
this pattern.

apply

By making observations like rotation

these, we can determine
how to update a red/black
tree after an insertion.
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Building Up Rules

 The complex rules on red/black trees make
perfect sense if you connect it back to 2-3-4 trees.

* There are lots of cases to consider because there
are many different ways you can insert into a
red/black tree.

 Main point: Simulating the insertion of a key into
a node takes time O(1) in all cases. Therefore,
since 2-3-4 trees support O(log n) insertions,
red/black trees support O(log n) insertions.

e The same is true of deletions.



My Advice

Do know how to do B-tree insertions and searches.

* You can derive these easily if you remember to split
nodes.

Do remember the rules for red/black trees and B-trees.
 These are useful for proving bounds and deriving results.

Do remember the isometry between red/black trees
and 2-3-4 trees.

 (Gives immediate intuition for all the red/black tree
operations.

Don't memorize the red/black rotations and color flips.

« This is rarely useful. If you're coding up a red/black tree,
just flip open CLRS and translate the pseudocode. ©®



Time-Out for Announcements!



ASSU Elections

 ASSU Elections for next year are being held over
the weekend.

 Take these elections seriously. ASSU wields
real power.

« ASSU appoints students to serve on university
governance committees.

« ASSU has direct say in several university policies (e.g.
academic integrity).

 If you're graduating this year, take this seriously
anyway. Next year’s students will thank you.



Participation Opt-Out Deadline

 As a reminder, the deadline to opt out of
lecture participation and shift the weight
to your final exam is this Friday at
11:59PM.

* You can do so by filling out the form
linked from the EdStem Q&A forum.



Problem Set 3

* Problem Set 2 was due today at 1:00PM.

 Need more time? Feel free to use one or two late days to
extend the deadline by 24 or 48 hours, respectively.

* Problem Set 3 (Hashing and Sketching) goes out
today at 1:00PM. It comes due next Thursday, May 1
at 1:00PM.

* Get a feel for how 2-independent hashing works.

* Design your own cardinality estimator and learn to work
with concentration inequalities.

 Implement HyperLogLog and see just how good it is.

* Ping us on Ed or stop by office hours if you have
questions!



Back to CS16606!



Dynamic Problems



Classical Algorithms

 The “classical” algorithms model goes
something like this:

Given some input X, compute some
interesting function f(X).

 The input X is provided up front, and only a
single answer is produced.

time

Input X
provided

' >
h Output f(X)
computed



Dynamic Problems

 Dynamic versions of problems are framed like this:

Given an input X that can change in particular
ways, maintain X while being able to compute
f(X) efficiently at any point in time.

 These problems are typically harder to solve
efficiently than the “classical” static versions.

fX) X X
computed updated updated

| | | | |
| | | >

time

X
updated

Input X
provided

fX)

computed




Dynamic Selection

 The selection problem is the following:

Given a list of distinct values and a number Kk,
return the kth-smallest value.

 In the static case, where the data are fixed in advance
and k is known, we can solve this in time O(n) using
quickselect or the median-of-medians algorithm.

* Goal: Solve this problem efficiently when the data set
is changing - that is, the underlying set of elements
can have insertions and deletions intermixed with
queries.
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Dynamic Selection

Ol 2@l 48

Problem: After inserting a
new value, we may have to
update ©(n) values.
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This is inherent in this solution
route. These numbers track
global properties of the tree.
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Dynamic Selection

K If new nodes are added to the

the left subtree, the numbers on
the right don’t need to update.
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Mechanically: Number
each key so that it only stores
its order statistic in the
subtree rooted at itself.

15 0 @46

Operationally: Annotate
each key with the number of
keys in its left subtree.
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Dynamic Selection

We only update values on nodes that
gained a new key in their left subtree.
And there are only O(log n) of these!




Dynamic Selection
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We only update values on nodes that
gained a new key in their left subtree.
And there are only O(log n) of these!
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We only update values on nodes that
gained a new key in their left subtree.
And there are only O(log n) of these!
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Rotate
Right

What numbers go here? Answer at

https://cs166.stanford.edu/pollev
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Order Statistic Trees

 This modified red/black tree is called an order
statistic tree.

« Start with a red/black tree.
« Tag each node with the number of nodes in its left subtree.

« Use the preceding update rules to preserve values during
rotations.

 Propagate other changes up to the root of the tree.

* Only O(log n) values must be updated on an insertion
or deletion and each can be updated in time O(1).

 Supports all BST operations plus select (find kth
order statistic) and rank (given a key, report its order
statistic) in time O(log n).



Generalizing our Idea



Edits to values are localized along the access path.



Edits to values are localized along the access path.



Edits to values are localized along the access path.



Edits to values are localized along the access path.
We can recompute values after a rotation.
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Edits to values are localized along the access path.
We can recompute values after a rotation.



Edits to values are localized along the access path.
We can recompute values after a rotation.
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Edits to values are localized along the access path.
We can recompute values after a rotation.



Edits to values are localized along the access path.
We can recompute values after a rotation.



Edits to values are localized along the access path.
We can recompute values after a rotation.



Imagine we cache some value in each node that can be computed
just from (1) the node itself and (2) its children’s values.



Imagine we cache some value in each node that can be computed
just from (1) the node itself and (2) its children’s values.



Recompute
values on this
access path,
bottom-up.

Imagine we cache some value in each node that can be computed
just from (1) the node itself and (2) its children’s values.



C

Imagine we cache some value in each node that can be computed
just from (1) the node itself and (2) its children’s values.



—

Recompute
the values in
these nodes.

Imagine we cache some value in each node that can be computed
just from (1) the node itself and (2) its children’s values.
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Imagine we cache some value in each node that can be computed
just from (1) the node itself and (2) its children’s values.



Recompute
the values in
these nodes.

Imagine we cache some value in each node that can be computed
just from (1) the node itself and (2) its children’s values.



Imagine we cache some value in each node that can be computed
just from (1) the node itself and (2) its children’s values.



Theorem: Suppose we want to cache some computed value in
each node of a red/black tree. Provided that the value can be
recomputed purely from the node’s value and from it’s children’s
values, and provided that each value can be computed in time
O(1), then these values can be cached in each node with
insertions, lookups, and deletions still taking time O(log n).



Example: Hierarchical Clustering



1D Hierarchical Clustering
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1D Hierarchical Clustering

20 43 60 66 71 86 92 100
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1D Hierarchical Clustering
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1D Hierarchical Clustering
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1D Hierarchical Clustering
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1D Hierarchical Clustering
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1D Hierarchical Clustering
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1D Hierarchical Clustering
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1D Hierarchical Clustering
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1D Hierarchical Clustering
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1D Hierarchical Clustering
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1D Hierarchical Clustering
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1D Hierarchical Clustering
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1D Hierarchical Clustering
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1D Hierarchical Clustering
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1D Hierarchical Clustering
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1D Hierarchical Clustering
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1D Hierarchical Clustering
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1D Hierarchical Clustering

This tree is called
a dendrogram.
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Analyzing the Runtime

« How efficient is this algorithm?

e Number of rounds: ®(n).
 Work to find closest pair: O(n).
e Total runtime: ®(n?).

e Can we do better?



Analyzing the Runtime

 Work to find closest pair: O(n).



Dynamic 1D Closest Points

 The dynamic 1D closest points
problem is the following:

Maintain a set of real numbers
undergoing insertion and deletion
while efficiently supporting queries
of the form “what is the closest pair
of points?”

e Can we build a better data structure for
this?



Dynamic 1D Closest Points

max




A Tree Augmentation

 Augment each node to store the tollowing:

 The maximum value in the tree.
 The minimum value in the tree.
 The closest pair of points in the tree.

 Claim: Each of these properties can be
computed in time O(1) from the left and right
subtrees.

 These properties can be augmented into a
red/black tree so that insertions and deletions
take time O(log n) and “what is the closest pair
of points?” can be answered in time O(1).



Dynamic 1D Closest Points

137
Min: ?
Max: ?
A0 Closest: ?, ? 271
Min: -17 Min: 142
Max: 67 Max: 415
Closest: 15, 21 Closest: 300, 310

Fill in the blanks.

Answer at
https://cs166.stanford.edu/pollev
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Min: -17
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A0 Closest: ?, ? 271
Min: -17 Min: 142
Max: 67 Max: 415
Closest: 15, 21 Closest: 300, 310




Dynamic 1D Closest Points

137
Min: -17
Max: 415
A0 Closest: 137, 142 271
Min: -17 Min: 142
Max: 67 Max: 415
Closest: 15, 21 Closest: 300, 310




Some Other Questions

« How would you augment this tree so that
you can efficiently (in time O(1)) compute
the appropriate weighted averages?

» Trickier: Is this the fastest possible
algorithm for this problem?

 What if you’re guaranteed that the keys are
all integers in some nice range?



A Helptul Intuition



Divide-and-Conquer

 Initially, it can be tricky to come up with the

right tree augmentations.

* Useful intuition: Imagine you're writing a
divide-and-conquer algorithm over the
elements and have O(1) time per “conquer”

step.

> k




Divide-and-Conquer

 Initially, it can be tricky to come up with the

right tree augmentations.

* Useful intuition: Imagine you're writing a
divide-and-conquer algorithm over the
elements and have O(1) time per “conquer”

step.

k

> k




Next Time

- Amortized Analysis

A little accounting trickery never hurt
anyone, right?

 The Potential Method
* A neat way to shift work around.
- Amortized-Efficient Data Structures

 Three classic data structures using the
technique.
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