Balanced Trees

Part Two

Outline for Today

* Red/Black Trees

e Using our isometry!
 Tree Rotations

« A key primitive in restructuring trees.
- Augmented Binary Search Trees

* Leveraging red/black trees.

Recap from Last Time

2-3-4 ‘Trees

« A 2-3-4 tree is a multiway search tree where

« every node has 1, 2, or 3 keys,

« any non-leaf node with k keys has exactly k+1 children, and

« all leaves are at the same depth.

« To insert a key, place it in a leaf. If out of space, split the leaf and
kick the median key one level higher, repeating this process.

5 1323

16

20

N

12 4 6 7.8 10 12 1415 17181

9 2122 24 26

Red/Black Trees

* A red/black tree is a BST with
the following properties:
« Every node is either red or black.
* The root is black.
* No red node has a red child.

* Every root-null path in the tree
passes through the same number of
black nodes.

Red/Black Trees

* A red/black tree is a BST with
the following properties:
« Every node is either red or black.
* The root is black.
* No red node has a red child.

* Every root-null path in the tree
passes through the same number of
black nodes.

 After we hoist red nodes into
their parents:

« Each “meta node” has 1, 2, or 3
keys in it. (No red node has a red

child.) This is a

- Each “meta node” is either a leaf or 2-3-4 tree!
has one more child than key. (Root-
null path property.)

e Each “meta leaf” is at the same
depth. (Root-null path property.)

New Stuff!

Data Structure Isometries

 Red/black trees are an isometry of 2-3-4 trees;
they represent the structure of
2-3-4 trees in a different way.

» That gives us some really easy theorems
basically for free.

« Theorem: The maximum height of a red/black
tree with n nodes is O(log n).

Data Structure Isometries

 Red/black trees are an isometry of 2-3-4 trees;
they represent the structure of
2-3-4 trees in a different way.

» That gives us some really easy theorems
basically for free.

« Theorem: The maximum height of a red/black
tree with n nodes is O(log n).

Explain why, using the isometry.

Answer at
https://cs166.stanford.edu/pollev

https://cs166.stanford.edu/pollev

Data Structure Isometries

 Red/black trees are an isometry of 2-3-4 trees;
they represent the structure of
2-3-4 trees in a different way.

» That gives us some really easy theorems
basically for free.

« Theorem: The maximum height of a red/black
tree with n nodes is O(log n).

* Proof idea: Pulling red nodes into their
parents forms a 2-3-4 tree with n keys, which
has height O(log n). Undoing this at most
doubles the height of the tree. B-ish

Exploring the Isometry

e Nodes in a 2-3-4 tree are classified into
types based on the number of children
they can have.

 2-nodes have one key (two children).
 3-nodes have two keys (three children).
* 4-nodes have three keys (four children).

« How might these nodes be represented?

Exploring the Isometry

Ka

s 9 o
e @ﬁb

13 17 23 31

add add

13 17 23 31
add add
= 5 = = 5 =
7 19

13 17 23 31

13 17 23 31
add add
= 5 = = 5 =
7 19

3|5 1317 2331

13 17 23 31
add add
= 5 = = 5 =
7 19

3|5 1317 2331

Goal

add

19

13

17

N

add

N

23

31

3 5 13117 23 31
add add
7 19

3|5 1317 2331

3 5 13117 23 31
add add
7 19

35 1317 21 23 31

add add
<217 <217

7 19

f@\@ 35 1317 21 23 31

o

S

*
[~
& |

S

*
[~
E, |

Red/Black Tree Insertion

* Rule #1: When inserting a node, if its
parent is black, make the node red and
stop.

» Justification: This simulates inserting a
key into an existing 2-node or 3-node.

e 6 b 68

7 19\

3 b 13117 21 23 31
add add
<47 <47
7 19

35 1317 21 23 31

7 19\

3 b 13117 21 23 31
add add
<47 <47
7 19

34 5 1317 212331

7 19\

add add
<47 <47
719

34 5 1317 212331

We need to move nodes
around in a binary search
tree. How do we do this?

Goal

Tree Rotations

/| \,
ﬂkﬁﬁégﬁﬁ“

Tree Rotations

A/\ Y

Rotate

Rotate
Left

apply
rotation

)

This applies any time we're
inserting a new node into
the middle of a “3-node” in
this pattern.

apply

By making observations like rotation

these, we can determine
how to update a red/black
tree after an insertion.

6

6o

add

13

15

17

add

7

7

21

23

31

13

15

17

21

23

31

add

13 1517

add

7

21

23

31

7

13

1516

17

21

23

31

add

13

1517

add

7

21

23

31

7

13

15

16

17

21

23

31

add

13

15

17

add

7

7

21

23

31

15

19

13

16 17

21

23

31

13

1517

add

add

21

23

31

7

13

16

17

21

23

31

N

4 5 1311517 21 23 31
add add

/ 7 19

4 5 |13 16/17 21 23 31

Building Up Rules

 The complex rules on red/black trees make
perfect sense if you connect it back to 2-3-4 trees.

* There are lots of cases to consider because there
are many different ways you can insert into a
red/black tree.

 Main point: Simulating the insertion of a key into
a node takes time O(1) in all cases. Therefore,
since 2-3-4 trees support O(log n) insertions,
red/black trees support O(log n) insertions.

e The same is true of deletions.

My Advice

Do know how to do B-tree insertions and searches.

* You can derive these easily if you remember to split
nodes.

Do remember the rules for red/black trees and B-trees.
 These are useful for proving bounds and deriving results.

Do remember the isometry between red/black trees
and 2-3-4 trees.

 (Gives immediate intuition for all the red/black tree
operations.

Don't memorize the red/black rotations and color flips.

« This is rarely useful. If you're coding up a red/black tree,
just flip open CLRS and translate the pseudocode. ©®

Time-Out for Announcements!

ASSU Elections

 ASSU Elections for next year are being held over
the weekend.

 Take these elections seriously. ASSU wields
real power.

« ASSU appoints students to serve on university
governance committees.

« ASSU has direct say in several university policies (e.g.
academic integrity).

 If you're graduating this year, take this seriously
anyway. Next year’s students will thank you.

Participation Opt-Out Deadline

 As a reminder, the deadline to opt out of
lecture participation and shift the weight
to your final exam is this Friday at
11:59PM.

* You can do so by filling out the form
linked from the EdStem Q&A forum.

Problem Set 3

* Problem Set 2 was due today at 1:00PM.

 Need more time? Feel free to use one or two late days to
extend the deadline by 24 or 48 hours, respectively.

* Problem Set 3 (Hashing and Sketching) goes out
today at 1:00PM. It comes due next Thursday, May 1
at 1:00PM.

* Get a feel for how 2-independent hashing works.

* Design your own cardinality estimator and learn to work
with concentration inequalities.

 Implement HyperLogLog and see just how good it is.

* Ping us on Ed or stop by office hours if you have
questions!

Back to CS16606!

Dynamic Problems

Classical Algorithms

 The “classical” algorithms model goes
something like this:

Given some input X, compute some
interesting function f(X).

 The input X is provided up front, and only a
single answer is produced.

time

Input X
provided

' >
h Output f(X)
computed

Dynamic Problems

 Dynamic versions of problems are framed like this:

Given an input X that can change in particular
ways, maintain X while being able to compute
f(X) efficiently at any point in time.

 These problems are typically harder to solve
efficiently than the “classical” static versions.

fX) X X
computed updated updated

| | | | |
| | | >

time

X
updated

Input X
provided

fX)

computed

Dynamic Selection

 The selection problem is the following:

Given a list of distinct values and a number Kk,
return the kth-smallest value.

 In the static case, where the data are fixed in advance
and k is known, we can solve this in time O(n) using
quickselect or the median-of-medians algorithm.

* Goal: Solve this problem efficiently when the data set
is changing - that is, the underlying set of elements
can have insertions and deletions intermixed with
queries.

31 41 59 26 53 58 79

Dynamic Selection

14

Dynamic Selection

ol 14

Dynamic Selection

Dynamic Selection

Dynamic Selection

Dynamic Selection

ol 14

Dynamic Selection

ol 14

Dynamic Selection

ol 14

1

Dynamic Selection

Dynamic Selection

Dynamic Selection

N 14

1

Dynamic Selection

Ol 2@l 48

Problem: After inserting a
new value, we may have to
update ©(n) values.

N 14

11 @)

7 @ 10948

This is inherent in this solution
route. These numbers track
global properties of the tree.

Dynamic Selection

14

Dynamic Selection

ol 14

Dynamic Selection

Dynamic Selection

Dynamic Selection

K If new nodes are added to the

the left subtree, the numbers on
the right don’t need to update.

Dynamic Selection

Dynamic Selection

Dynamic Selection

Dynamic Selection

ol 14

Dynamic Selection

ol 14

Dynamic Selection

ol 14

3

0 3 M 5

Mechanically: Number
each key so that it only stores
its order statistic in the
subtree rooted at itself.

15 0 @46

Operationally: Annotate
each key with the number of
keys in its left subtree.

Dynamic Selection

ol 14

Dynamic Selection

5!

Dynamic Selection

ol 14

1?

3

Dynamic Selection

ol 14

0

Dynamic Selection

ol 14

0

Dynamic Selection

ol 14

Dynamic Selection

5!

Dynamic Selection

. L]

/A 19

Dynamic Selection

. L]

/A 19

Dynamic Selection

ol 14

Dynamic Selection

ol 14

Dynamic Selection

ol 14

/A 19

1 @ “1

15 0 @46

0 0

Dynamic Selection

ol 14

/A 19

1 @ 31

15 0 @46

0 0

Dynamic Selection

ol 14

Dynamic Selection

ol 14

Dynamic Selection

ol 14

Dynamic Selection

Dynamic Selection

We only update values on nodes that
gained a new key in their left subtree.
And there are only O(log n) of these!

Dynamic Selection

R 14

15 0 @46

We only update values on nodes that
gained a new key in their left subtree.
And there are only O(log n) of these!

Dynamic Selection

R 14

15 0 @46

We only update values on nodes that
gained a new key in their left subtree.
And there are only O(log n) of these!

Dynamic Selection

N 14

Dynamic Selection

N 14

Dynamic Selection

N 14

Dynamic Selection

N 14

Dynamic Selection

N 14

Dynamic Selection

N 14

2 W

Y 15 % Y 23
How do we update the X 16
numbers after the rotation?

ol 5 il 5 K 9

Rotate
Right

What numbers go here? Answer at

https://cs166.stanford.edu/pollev

https://cs166.stanford.edu/pollev

Rotate
Right

Rotate
Right

Rotate
Right

Rotate
Right

Rotate
Left

Rotate
Right

Rotate
Left

Rotate
Right

Rotate
Left

Dynamic Selection

N 14

2 W

Y 15 % Y 23
How do we update the X 16
numbers after the rotation?

ol 5 il 5 K 9

Dynamic Selection

N 14

Dynamic Selection

N 14

1 €] @2 17

o0 5 K O M 16

ol 3

0 Qis

Dynamic Selection

N 14

Dynamic Selection

N 14

Order Statistic Trees

 This modified red/black tree is called an order
statistic tree.

« Start with a red/black tree.
« Tag each node with the number of nodes in its left subtree.

« Use the preceding update rules to preserve values during
rotations.

 Propagate other changes up to the root of the tree.

* Only O(log n) values must be updated on an insertion
or deletion and each can be updated in time O(1).

 Supports all BST operations plus select (find kth
order statistic) and rank (given a key, report its order
statistic) in time O(log n).

Generalizing our Idea

Edits to values are localized along the access path.

Edits to values are localized along the access path.

Edits to values are localized along the access path.

Edits to values are localized along the access path.
We can recompute values after a rotation.

)

Edits to values are localized along the access path.
We can recompute values after a rotation.

Edits to values are localized along the access path.
We can recompute values after a rotation.

C

Edits to values are localized along the access path.
We can recompute values after a rotation.

Edits to values are localized along the access path.
We can recompute values after a rotation.

Edits to values are localized along the access path.
We can recompute values after a rotation.

Imagine we cache some value in each node that can be computed
just from (1) the node itself and (2) its children’s values.

Imagine we cache some value in each node that can be computed
just from (1) the node itself and (2) its children’s values.

Recompute
values on this
access path,
bottom-up.

Imagine we cache some value in each node that can be computed
just from (1) the node itself and (2) its children’s values.

C

Imagine we cache some value in each node that can be computed
just from (1) the node itself and (2) its children’s values.

—

Recompute
the values in
these nodes.

Imagine we cache some value in each node that can be computed
just from (1) the node itself and (2) its children’s values.

)

Imagine we cache some value in each node that can be computed
just from (1) the node itself and (2) its children’s values.

Recompute
the values in
these nodes.

Imagine we cache some value in each node that can be computed
just from (1) the node itself and (2) its children’s values.

Imagine we cache some value in each node that can be computed
just from (1) the node itself and (2) its children’s values.

Theorem: Suppose we want to cache some computed value in
each node of a red/black tree. Provided that the value can be
recomputed purely from the node’s value and from it’s children’s
values, and provided that each value can be computed in time
O(1), then these values can be cached in each node with
insertions, lookups, and deletions still taking time O(log n).

Example: Hierarchical Clustering

1D Hierarchical Clustering

20

42

44

60

66

71

386

92

100

1D Hierarchical Clustering

20

42

44

60

66

71

86

92

100

20

42

44

60

66

71

386

92

100

1D Hierarchical Clustering

20

42

44

60

66

71

86

92

100

20

42

44

60

66

71

386

92

100

1D Hierarchical Clustering

20 43 60 66 71 86 92 100
42 44
20 42 44 60 66 71 86 92 100

1D Hierarchical Clustering

20 43 60 66 71 86 92 100
42 44
20 42 44 60 66 71 86 92 100

1D Hierarchical Clustering

20 43 60 66 71 86 92 100
42 44
20 42 44 60 66 71 86 92 100

1D Hierarchical Clustering

20 43 60 66 71 86 92 100
42 44
20 42 44 60 66 71 86 92 100

1D Hierarchical Clustering

20 43 60 68.5 86 92 100
42 44 66 71
20 42 44 60 66 71 86 92 100

1D Hierarchical Clustering

20 43 60 68.5 86 92 100
42 44 66 71
20 42 44 60 66 71 86 92 100

1D Hierarchical Clustering

20 43 60 68.5 86 92 100
42 44 66 71
20 42 44 60 66 71 86 92 100

1D Hierarchical Clustering

20 43 60 68.5 86 92 100
42 44 66 71
20 42 44 60 66 71 86 92 100

1D Hierarchical Clustering

20 43 60 68.5 89 100
42 44 66 71 86 92
20 42 44 60 66 71 86 92 100

1D Hierarchical Clustering

20 43 60 68.5 89 100
42 44 66 71 86 92
20 42 44 60 66 71 86 92 100

1D Hierarchical Clustering

20 43 60 68.5 89 100
42 44 66 71 86 92
20 42 44 60 66 71 86 92 100

1D Hierarchical Clustering

20 43 60 68.5 89 100
42 44 66 71 86 92
20 42 44 60 66 71 86 92 100

1D Hierarchical Clustering

20

43

65.67

89

100

42

44

60

66

71

86

92

/Q\

a8

20

42

44

60

66

71

386

92

100

1D Hierarchical Clustering

20 43 65.67 89 100
42 44 60 66 71 86 92
20 42 44 60 66 71 86 92 100

1D Hierarchical Clustering

20 43 65.67 89 100
42 44 60 66 71 86 92
20 42 44 60 66 71 86 92 100

1D Hierarchical Clustering

20 43 65.67 89 100
42 44 60 66 71 86 92
20 42 44 60 66 71 86 92 100

1D Hierarchical Clustering

20 43 65.67 92.67
42 44 60 66 71 86 92 100
20 42 44 60 66 71 86 92 100

1D Hierarchical Clustering

20

43

65.67

92.67

42

44

60

66

71

86

92

100

20

4

¥

4

6

O 66 7

1

3

‘.

0

1D Hierarchical Clustering

20

43

65.67

92.67

42

44

60

66

71

86

92

100

20

4

¥

4

6

O 66 7

1

3

‘.

0

1D Hierarchical Clustering

20

43

65.67

92.67

42

44

60

66

71

86

92

100

20

4

¥

4

6

O 66 7

1

3

‘.

0

1D Hierarchical Clustering

20

56.6

92.67

42

44

60

66

71

86

92

100

20

4

¥

4

6

O 66 7

1

3

‘.

0

1D Hierarchical Clustering

20 56.6 92.67
42 44 60 66 71 86 92 100
20 42 44 60 66 71 86 92 100

1D Hierarchical Clustering

20 56.6 92.67
42 44 60 66 71 86 92 100
20 42 44 60 66 71 86 92 100

1D Hierarchical Clustering

20 56.6 92.67
42 44 60 66 71 86 92 100
20 42 44 60 66 71 86 92 100

1D Hierarchical Clustering

20 70.13
42 44 60 66 71 86 92 100
20 42 44 60 66 71 86 92 100

1D Hierarchical Clustering

20

70.13

42

44

60

66

71

86

92

100

20

42

44

60

66

71

386

92

100

1D Hierarchical Clustering

20

70.13

42

44

60

66

71

86

92

100

20

42

44

60

66

71

386

92

100

1D Hierarchical Clustering

20

70.13

42

44

60

66

71

86

92

100

20

42

44

60

66

71

386

92

100

1D Hierarchical Clustering

64.56

20

42

44

60

66

71

86

92

100

20

42

44

60

66

71

386

92

100

1D Hierarchical Clustering

64.56

20

42

44

60

66

71

86

92

100

20

42

44

60

66

71

386

92

100

1D Hierarchical Clustering

20

42

44

60

66

71

386

92

100

1D Hierarchical Clustering

This tree is called
a dendrogram.

20

42

44

60

66

71

386

92

100

Analyzing the Runtime

« How efficient is this algorithm?

e Number of rounds: ®(n).
 Work to find closest pair: O(n).
e Total runtime: ®(n?).

e Can we do better?

Analyzing the Runtime

 Work to find closest pair: O(n).

Dynamic 1D Closest Points

 The dynamic 1D closest points
problem is the following:

Maintain a set of real numbers
undergoing insertion and deletion
while efficiently supporting queries
of the form “what is the closest pair
of points?”

e Can we build a better data structure for
this?

Dynamic 1D Closest Points

max

A Tree Augmentation

 Augment each node to store the tollowing:

 The maximum value in the tree.
 The minimum value in the tree.
 The closest pair of points in the tree.

 Claim: Each of these properties can be
computed in time O(1) from the left and right
subtrees.

 These properties can be augmented into a
red/black tree so that insertions and deletions
take time O(log n) and “what is the closest pair
of points?” can be answered in time O(1).

Dynamic 1D Closest Points

137
Min: ?
Max: ?
A0 Closest: ?, ? 271
Min: -17 Min: 142
Max: 67 Max: 415
Closest: 15, 21 Closest: 300, 310

Fill in the blanks.

Answer at
https://cs166.stanford.edu/pollev

https://cs166.stanford.edu/pollev

Dynamic 1D Closest Points

137
Min: ?
Max: ?
A0 Closest: ?, ? 271
Min: -17 Min: 142
Max: 67 Max: 415

Closest: 15, 21 Closest: 300, 310

Dynamic 1D Closest Points

137
Min: -17
Max: ?
A0 Closest: ?, ? 271
Min: -17 Min: 142
Max: 67 Max: 415

Closest: 15, 21 Closest: 300, 310

Dynamic 1D Closest Points

137
Min: -17
Max: 415
A0 Closest: ?, ? 271
Min: -17 Min: 142
Max: 67 Max: 415
Closest: 15, 21 Closest: 300, 310

Dynamic 1D Closest Points

137
Min: -17
Max: 415
A0 Closest: 137, 142 271
Min: -17 Min: 142
Max: 67 Max: 415
Closest: 15, 21 Closest: 300, 310

Some Other Questions

« How would you augment this tree so that
you can efficiently (in time O(1)) compute
the appropriate weighted averages?

» Trickier: Is this the fastest possible
algorithm for this problem?

 What if you’re guaranteed that the keys are
all integers in some nice range?

A Helptul Intuition

Divide-and-Conquer

 Initially, it can be tricky to come up with the

right tree augmentations.

* Useful intuition: Imagine you're writing a
divide-and-conquer algorithm over the
elements and have O(1) time per “conquer”

step.

> k

Divide-and-Conquer

 Initially, it can be tricky to come up with the

right tree augmentations.

* Useful intuition: Imagine you're writing a
divide-and-conquer algorithm over the
elements and have O(1) time per “conquer”

step.

k

> k

Next Time

- Amortized Analysis

A little accounting trickery never hurt
anyone, right?

 The Potential Method
* A neat way to shift work around.
- Amortized-Efficient Data Structures

 Three classic data structures using the
technique.

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54
	Slide 55
	Slide 56
	Slide 57
	Slide 58
	Slide 59
	Slide 60
	Slide 61
	Slide 62
	Slide 63
	Slide 64
	Slide 65
	Slide 66
	Slide 67
	Slide 68
	Slide 69
	Slide 70
	Slide 71
	Slide 72
	Slide 73
	Slide 74
	Slide 75
	Slide 76
	Slide 77
	Slide 78
	Slide 79
	Slide 80
	Slide 81
	Slide 82
	Slide 83
	Slide 84
	Slide 85
	Slide 86
	Slide 87
	Slide 88
	Slide 89
	Slide 90
	Slide 91
	Slide 92
	Slide 93
	Slide 94
	Slide 95
	Slide 96
	Slide 97
	Slide 98
	Slide 99
	Slide 100
	Slide 101
	Slide 102
	Slide 103
	Slide 104
	Slide 105
	Slide 106
	Slide 107
	Slide 108
	Slide 109
	Slide 110
	Slide 111
	Slide 112
	Slide 113
	Slide 114
	Slide 115
	Slide 116
	Slide 117
	Slide 118
	Slide 119
	Slide 120
	Slide 121
	Slide 122
	Slide 123
	Slide 124
	Slide 125
	Slide 126
	Slide 127
	Slide 128
	Slide 129
	Slide 130
	Slide 131
	Slide 132
	Slide 133
	Slide 134
	Slide 135
	Slide 136
	Slide 137
	Slide 138
	Slide 139
	Slide 140
	Slide 141
	Slide 142
	Slide 143
	Slide 144
	Slide 145
	Slide 146
	Slide 147
	Slide 148
	Slide 149
	Slide 150
	Slide 151
	Slide 152
	Slide 153
	Slide 154
	Slide 155
	Slide 156
	Slide 157
	Slide 158
	Slide 159
	Slide 160
	Slide 161
	Slide 162
	Slide 163
	Slide 164
	Slide 165
	Slide 166
	Slide 167
	Slide 168
	Slide 169
	Slide 170
	Slide 171
	Slide 172
	Slide 173
	Slide 174
	Slide 175
	Slide 176
	Slide 177
	Slide 178
	Slide 179
	Slide 180
	Slide 181
	Slide 182
	Slide 183
	Slide 184
	Slide 185
	Slide 186
	Slide 187
	Slide 188
	Slide 189
	Slide 190
	Slide 191
	Slide 192
	Slide 193
	Slide 194
	Slide 195
	Slide 196
	Slide 197
	Slide 198
	Slide 199
	Slide 200
	Slide 201
	Slide 202
	Slide 203
	Slide 204
	Slide 205
	Slide 206
	Slide 207
	Slide 208
	Slide 209
	Slide 210

